Forecasting Wheat Price Using Backpropagation And NARX Neural Network

نویسنده

  • Azme Khamis
چکیده

--------------------------------------------------ABSTRACT-------------------------------------------------------This study aims to investigate suitable model and forecast future wheat price using backpropagation neural network (BPNN) and nonlinear autoregressive models with exogenous inputs (NARX) networks. The price of wheat was estimated using prices of 3 types of grains widely used in agriculture which are oats, barley and soybeans. The analysis was conducted using historical data on the prices from 1978 until 2012. Artificial neural networks are non-parametric statistical estimators, and thus have potential for use in estimation modeling. The variables selection criteria procedures are also developed to select a significance explanatory variable. The methods are compared to obtain the best model for predicting wheat price. Based on the results, the NARX model with 8 nodes in hidden layer and 4 tapped delay lines can be used as an alternative model predict wheat price.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Simulation Performance of Feedforward and NARX Networks Under Different Numerical Training Algorithms

This chapter focuses on comparing the forecasting ability of the backpropagation neural network (BPNN) and the nonlinear autoregressive moving average with exogenous inputs (NARX) network trained with different algorithms; namely the quasi-Newton (Broyden-Fletcher-Goldfarb-Shanno, BFGS), conjugate gradient (Fletcher-Reeves update, Polak-Ribiére update, Powell-Beale restart), and Levenberg-Marqu...

متن کامل

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

Modeling and Forecasting Effects of Crude Oil Price Changes on the US and UK GDP

        This paper proposes a new forecasting model for investigating relationship between the price of crude oil, as an important energy source and GDP of the US, as the largest oil consumer, and the UK, as the oil producer. GMDH neural network and MLFF neural network approaches, which are both non-linear models, are employed to forecast GDP responses to the oil price changes. The resul...

متن کامل

Forecasting Gold Price Changes: Application of an Equipped Artificial Neural Network

The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014